Tag Archives: In the News

Brood X Cicadas in the Midwest?

Will we see Brood X cicadas in Wisconsin or the upper Midwest this year? Read on to find out: Cicadas—they’re all over the news and soon to be out by the billions. All this buzz is about periodical cicadas, a group of species from the genus Magicicada which emerge once every 17 years (or every 13 years in some cases). Periodical cicadas are only found in the eastern United States and vary by location and the timing of their activity. To help categorize these insects, entomologists refer to each cohort of cicadas as a “brood” and have numbered them with Roman numerals. This year’s cicadas are referred to as Brood X (i.e., Brood ten) and last emerged in 2004.

Two periodical cicadas on a rock
Brood XIII periodical cicadas in Lake Forest, IL in June of 2007. Photo Credit: Janet and Phil via Flickr (CC).

Periodical cicadas are amongst the longest lived insects and their long life span and massive emergences are believed to be a survival strategy—by overwhelming predators with sheer numbers, they simply can’t all be eaten. But the wait for their appearance is a long one.  Periodical cicadas spend 17 years below ground as juveniles (nymphs) feeding on the sap from tree roots, before making their way above ground. Their emergence is associated with soil temperatures, and when the soil has warmed to 64˚F, they emerge. This corresponds to parts of April, May, or June depending on the location on the map. Once they make their way above ground, the cicadas molt and transform into adults.  Shortly thereafter, a raucous mating free-for-all commences. After mating, the females cut small slits into twigs of trees to deposit their eggs. The eggs hatch and the juveniles head to the soil for their lengthy development. Periodical cicadas don’t live long as adults (a matter of weeks), so it’s a long build up to a noisy grand finale.

Ground covered by periodical cicadas
Ground covered by periodical cicadas. When these insects emerge, it can be by the billions! Photo credit: James St. John, via Wikipedia (CC).

With all the attention in the news, many Wisconsinites and other Midwesterners are wondering if they’ll be able to see or hear Brood X cicadas in their area this year. For Wisconsin, Minnesota, Iowa, and most of Michigan and Illinois the answer is noalthough they aren’t terribly far away either. Brood X cicadas can be found in over a dozen eastern states, but primarily emerge in three main pockets:

  1. Indiana, Ohio and nearby slivers of eastern Illinois and southern Michigan
  2. Southern Pennsylvania and parts of nearby Delaware, Maryland, Virginia, New Jersey, and New York
  3. Eastern Tennessee and nearby parts of North Carolina and Georgia
Periodical Cicada Brood Map from US Forest Service
Map of active periodical cicada broods of the United States. Map credit: USDA Forest Service. Click map for full size version and additional information.

While we won’t see Brood X cicadas here in Wisconsin, we will see other periodical cicadas in the not so distant future. Wisconsin is home to Brood XIII cicadas, which last emerged in 2007, meaning that the next big emergence in the Badger State is only a few years off in 2024. In the meantime, we’ll still see and hear plenty of our typical “dog day” cicadas during the warm days of summer.  To learn more about Brood XIII cicadas in Wisconsin, check out this post from last year.

The Monarch’s Precarious Position

Endangered. It’s an imposing term and not one to be taken lightly. Monarchs have been in a perilous spot for years and there have been rumblings of potentially listing monarch butterflies (Danaus plexippus) as endangered by the UW Fish & Wildlife Service. After delays, we finally received a decision in December of 2020—“warranted but precluded”.

Monarch butterfly on the UW-Madison Campus. Photo Credit: PJ Liesch, UW Entomology.

In a technical sense, labeling a species as endangered isn’t as simple as merely placing it on a list. There’s a lengthy review process and potential species are evaluated in terms of how pressing their situation is. In the case of monarchs, the “warranted” part of the decision indicates that monarchs are indeed in need of protection. The alarming part is the “but precluded” statement—it essentially means that other species are facing even more pressing situations and are ahead in line. Some consider us to be in the midst of the “sixth” major extinction event on planet earth, although this one differs in that it’s caused by humans. In short, there are a lot of species that will be facing declines and extinction. At the time of the monarch’s decision from US FWS, there were currently 161 other species listed ahead of monarchs in the priority queue.

Unfortunately, since the US FWS decision last December, we’ve had some alarming news come out about monarch populations. First, it’s helpful to understand monarchs in the US as we actually have two main populations: a western population and an eastern population.

The western population can be found in states such as California, Oregon, Washington, Idaho, Nevada, and Utah west of the Rocky Mountains (a natural barrier to dispersal). While we may think of monarchs migrating to the area outside of Mexico City, this western population heads from their summer grounds to overwinter in parts of southern California. Unfortunately in January of 2021, the Xerces Society reported that only 1,914 total overwintering monarch butterflies were counted—a 99.9% decrease over the last 30 years. For comparison, a similar assessment conducted  in 1997 estimated over 1.2 million overwintering monarchs. Experts have estimated a critical “extinction threshold” of 30,000 monarchs for this western population to hang on. With fewer than 2,000 monarchs spotted in late 2020, the western monarch’s situation can’t get any more urgent.

In the Midwest, we see the eastern monarch population which ranges over much of eastern North America east of the Rocky Mountains. These are the monarchs that make the long perilous flight to overwinter in the mountains outside of Mexico City. While the eastern monarch population’s situation isn’t necessarily as dire as out west, it’s still tenuous to say the least. An assessment of the eastern population is usually released in late winter and the most recent estimate found a 26% drop in overwintering monarch populations compared to last year. Over the last 20 years, the eastern monarch population has declined by approximately 90%. With larger numbers of butterflies in the eastern population, scientists don’t count individual butterflies to gauge their numbers. Instead they estimate the area occupied by densely-packed overwintering monarchs clustered together by the thousands on pine trees at their overwintering habitat in Mexico. The recent assessment found monarchs packed into an area of 2.1 hectares (5.2 acres). While this may sound like a big area packed to the gills with butterflies, it’s estimated that 6 hectares (14.8 acres) of overwintering monarchs is a “critical mass” needed to maintain the eastern population. Unfortunately, the news of both the eastern and western monarch populations comes as a punch to the gut since their numbers have been trending downwards over time.

Assessment of overwintering monarch butterflies, released 2021. Source: MonarchWatch.  Click for more detail.

While monarchs may be in a tight spot, they aren’t gone yet. With the “warranted but precluded” finding, the US Fish & Wildlife Service now considers monarchs a “candidate” species for listing and will continue to assess the situation as higher priority species are added to the endangered species list. In the meantime, if you’re looking for ways to help monarchs, the Wisconsin Monarch Collaborative was created in 2018 to coordinate conservation efforts of this species in our state—check out their website to see what you can do to help the monarchs: https://wiatri.net/Projects/Monarchs/.

Hindsight: 2020 Trends at the Wisconsin Insect Diagnostic Lab

When the COVID situation reared its head back in March of 2020, I wasn’t sure how it would impact activities at the UW Insect Diagnostic Lab.  While there was a shift to handling diagnostics mostly remotely, in the end, 2020’s caseload of 2,533 ID requests was just shy of 2019’s all-time record of 2,542 cases.  

With Governor Evers’ Stay-at-Home Order last spring, our attentions were occupied by the unraveling pandemic and caseload at the UW Insect Diagnostic Lab was lighter than usual around that time.  However, as Wisconsinites shifted to working from home, it meant spending more time in yards and many Wisconsinites pulled out their green thumbs and established COVID “Victory Gardens”.  As a result, the diagnostic lab saw a record number of cases in July of 2020, with close to 600 ID requests that month alone. 

Monthly caseload at the UW Insect Diagnostic Lab in 2020. Credit: PJ Liesch, UW-Entomology.

Outreach activities of the lab saw a dramatic shift as well.  With in-person presentations and workshops off the table, virtual events afforded new opportunities—like a Japanese beetle seminar in July which drew nearly 900 participants. Regular events, like my appearances on WPR’s The Larry Meiller Show also continued through 2020, although I fielded calls from my home’s “reading nook” rather than the WPR studio.  

One of the biggest insect stories of 2020 was the Asian giant hornet.  Last May we learned that Asian giant hornets had survived the winter in the Pacific Northwest.  This of course led to a distinct increase of so-called “sightings” of that insect in Wisconsin, although every  “sighting” ended up being common insects from our area.  Last year, I saw dozens of ID requests for insects which ended up being look-alikes such as cicada killer wasps, pigeon horntails, and great golden digger wasps.  To date, the nearest sighting of the Asian giant hornet is well over 1,000 miles from us here in Wisconsin and poses no immediate threat to the upper Midwest.  Further reading: 6 Things to Know about the Asian Giant Hornet.

Some invasive pests had big years as well.  The viburnum leaf beetle, lily leaf beetle, purple carrot seed moth, and brown marmorated stink bug all increased their footholds in the state. Japanese beetle numbers varied a lot depending on where you were located in Wisconsin.  Some areas saw little pressure during droughty periods, while other parts of Wisconsin saw high Japanese beetle activity.  Gypsy moths had been quiet in Wisconsin for several years, but increased their numbers last year.  I saw a distinct increase of gypsy moth cases in 2020, and I’ll be keeping a close eye on that species in 2021.   

Come fall, we saw some stretches of unseasonably pleasant temperatures in October, November, and December.  During those periods, multicolored Asian lady beetles—which had been lurking in the background for several years—returned to the spotlight.  The multicolored Asian lady beetle activity around Wisconsin was some of the highest of the last decade.  Not to be left out of the fun, minute pirate bugs were abundant in some parts of the state and made warm, sunny fall days a little less pleasant due to their biting habits.  Speaking of biting insects, black flies were abundant in 2020 and made outdoor activities more challenging in June and July.  Mosquito activity varied around the state, although we did see a few cases of the Eastern Equine Encephalitis in 2020.

While we won’t see a big emergence of 17-year periodical cicadas in Wisconsin until 2024, small numbers of out-of-sync “stragglers” did emerge in southeastern Wisconsin last summer. 

A female Dryinid wasp. The forelegs are highly modified into scythe-like claws used to grasp other insects. Photo credit: Ty Londo.

No two years are the same at the UW Insect Diagnostic Lab and that includes some of the “X-Files” type cases as well.  Some of my favorite cases from 2020 include identifying phorid flies from dead radioactive cats (it’s a long story…), a grim-reaper-esque dryinid wasp, several massive black-witch moths from Central America, and a case involving a black widow spider found in a head of broccoli from the grocery store.  Never a dull moment at the UW Insect Diagnostic Lab!

—PJ Liesch
Director, UW Insect Diagnostic Lab

Busy beetles: lady beetles take to the air and our homes

The spectacular fall weather this week has made it hard to work indoors. As Midwesterners, we know to appreciate the current warm spell as winter is just around the corner. If you’re like me, you’ve probably made it outside to take care of yard work, hike, grill out, or simply enjoy the fall colors. Speaking of colors, you’ve probably notices flashes of orange on the side of your home—multicolored Asian lady beetles (Harmonia axyridis). This fall, we’re seeing surprisingly high numbers of these lady beetles across Wisconsin.

An adult multicolored Asian lady beetle (Harmonia axyridis). Note the black “W” pattern just behind the head which helps identify this species. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

Just like us, the final warm days of autumn have worked these lady beetles into a frenzy of outdoor activity and our recent weather patterns are the key to this phenomenon. While not native to North America, the Asian lady beetle is an adaptable species and has a good feel for the seasons—it also knows that winter is coming. An important cue for lady beetle activity is the first frost or period of near-freezing temperatures in fall. This sets the stage and when the temperatures creep back up into the mid-60’s or 70’s, it initiates a massive game of hide-and-seek-shelter for these insects.

A group of overwintering Asian lady beetles beneath the loose bark of a dead tree. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

But why our homes? It turns out that Asian lady beetles don’t necessarily want to invade our homes—they simply look for sheltered spots to spend the winter. In more natural settings, I’ve found dozens of these beetles beneath the loose bark of dead trees or in firewood piles during the winter months.

In their native range of eastern Asia, multicolored Asian lady beetles are cliff dwellers. These beetles use visual cues to actively seek out conspicuous, exposed rock faces with cracks to squeeze into. They’re particularly fond of south or west facing cliffs, which get warmed by the sun in the afternoon when they’re most active. The lady beetles fly to these rock outcrops and examine the cracks and crevices to see if a suitable overwintering site has been found.  To us, our homes don’t necessarily resemble cliffs, but to the Asian lady beetles, the basic formula is there: large contrasting objects that stand out in the landscape with an abundance of vertical and horizontal lines resulting from modern design and construction methods. To the beetles, this looks close enough that they’ll fly to structures and wander around seeking out nooks and crannies to slip into as shown in the video clip below from the UW-Madison campus.

From the lady beetle’s point of view, these insects would really prefer to slip into a sheltered crack or crevice, hunker down for the winter, and leave again in the spring. However, when these insects get beneath siding or into a soffit area of our homes, they can accidentally pop out in the living quarters of the home—much to the dismay of the human inhabitants. This isn’t ideal for the insects either, which can face death by desiccation in the dry winter air indoors.

Enjoy these final warm days of autumn, because we’ll all be bundled up inside soon enough—with or without a bunch of lady beetles.


My final two cents: One of the best, long-term approaches to prevent nuisance issues with multicolored Asian lady beetles and other insects (like boxelder bugs and brown marmorated stink bugs) is to have good physical exclusion. This refers to making sure that potential entrance points on structures are sealed up due to good construction methods, caulk, expanding insulation foam, weatherstripping, or similar means.

Given their small general size, multicolored Asian lady beetles can squeeze through cracks or gaps as small as ⅛ inch in size. For perspective, this is about the same height as two pennies stacked atop one another. With that said, if you can easily slide two stacked pennies into a crack or crevice on the side of your house—it’s a big enough opening for multicolored Asian lady beetles to potentially get in!

 

Cicada Mania in Wisconsin?…Not ‘Til 2024

Perhaps you’ve heard some buzz about periodical cicadas (Magicicada spp.) lately. These insects resemble our typical “dog day” cicadas, which we see in mid-to-late summer in Wisconsin, but they are orange and black with vibrant reddish eyes instead of a dull greenish color. Parts of the US are currently seeing mass emergences of periodical cicadas, which appear by the millions every 13 or 17 years depending on the species. I’ve had a number of questions this last month asking if this was “the year” for us to see them in Wisconsin, but it’s not time for the big show…yet.

Left: A common “dog day” cicada; photo credit: PJ Liesch, UW Insect Diagnostic Lab. Right: A peridoical cicada; photo credit: Jay Sturner, via Wikipedia

Periodical cicadas are sorted into cohorts known as “broods”, which occur in particular geographic areas and emerge at specific points in time. For the most part, these insects are excellent timekeepers and some broods have been documented as far back as the 1600’s in the eastern US. There are entire websites and apps dedicated to these insects and their schedules, and scientists have labelled broods with Roman numerals to help differentiate the cohorts.

Map of active periodical cicada broods of the United States. Map credit: USDA Forest Service. Click map for full size version and additional information.

With all the broods out there, some parts of the US do see these cohorts overlap in space, but these can be separated by the years in which they emerge.  In Wisconsin, the situation is fairly straightforward as we only see a single brood: Brood XIII. Brood XIII’s 17-year cicadas last emerged in 2007, meaning that we’ve got four more years to wait until their mass emergence in 2024.

Interestingly, I’ve received a number of photos and reports of periodical cicadas in Wisconsin over the last month or so. I’ve had several confirmed reports from the Lake Geneva area (Walworth County) a confirmed report from southeastern Dane County, and a suspected report from Sauk County.  While most periodical cicadas stick to the schedule, occasionally some of these insects veer off course. These out-of-sync individuals are referred to as “stragglers” and it turns out that Brood XIII has a history of these stragglers. In the late 1960’s, large numbers of stragglers were documented in the Chicago area. Likewise, many of the Chicago suburbs are seeing a similar phenomenon this year. With that said, we did technically see some periodical cicadas this year, but we’ll have to wait a few more years before the real “fireworks”.

6 Things to Know About The Asian Giant Hornet

Asian giant hornets have hit the news recently, sometimes going by the name of “murder hornets”.  Below are six key things to know about these insects and the situation in North America:


1) What is the Asian Giant Hornet?
The Asian giant hornet (Vespa mandarinia), which is also known as the “great sparrow bee” in its native range (or recently sensationalized as the “murder hornet”) is a wasp species native to parts of southern and eastern Asia. The Asian giant hornet is amongst the world’s largest wasps, with queens approaching a length of 2 inches (typically ~1.5 inches). Workers and males are smaller, but still measure over an inch long. Asian giant hornets have a distinctive appearance with a bright yellowish-orange head, a dark body, and alternating dark and yellowish stripes on the gaster (“abdomen”). This species creates subterranean nests, which commonly have a peak workforce of around 100 workers.

A distinctive Asian giant hornet adult. Photo Credit: Washington State Dept. Agriculture, Bugwood.org

Asian giant hornets pose threats as an invasive species in North America. These insects are efficient predators with complex hunting behaviors. While Asian giant hornets prey upon a wide range of insects, they are capable of attacking honey bees. Under the right conditions, Asian giant hornets can decimate hives of European honey bees (Apis mellifera) within a few hours.  Their potent stings can also pose medical concerns for humans.


2) What’s the risk in the Midwest?
Based on the current situation, the risk from Asian giant hornets in Wisconsin and the Midwestern US is extremely low. To date, Asian giant hornets have never been found in Wisconsin or surrounding states. A very small number of Asian giant hornets were spotted in southwestern British Columbia and northwestern Washington state in the second half of 2019. For Wisconsin, these sightings have been roughly 1,500 miles from us. At the time this article was written (early May 2020), Asian giant hornets had not been spotted in North America in 2020. Update 5/27/20: we recently learned that AGHs have made it through the winter in North America.  This species recently resurfaced, as reported in the New York TimesDespite this recent finding, all confirmed sightings of the AGH are from the Pacific Northwest and these insects pose little risk for the Midwest at this time. Update 12/20: No substantial changes by the end of 2020—in North America, AGHs are still only known from far northwestern Washington State and nearby parts of British Columbia.  This insect has not been documented anywhere outside of that range. 


3) What’s the timeline of the Asian giant hornet story?
Asian giant hornets have gotten a lot of attention in the news recently, but these stories really missed the main “action”, which occurred roughly half a year ago. (Imagine if Sport Illustrated took half a year to write about the Super Bowl’s winning team!). The story of the Asian giant hornet in North America began in August of 2019 when a beekeeper in Nanaimo, British Columbia (SE Vancouver Island) spotted these wasps. Three specimens were collected at the time and their identity was confirmed.

Also in August of 2019, a beekeeper in Northern Bellingham, Washington (US) observed Asian giant hornets, but no specimens were collected. Back in Nanaimo, British Columbia, an Asian giant hornet nest was located and eradicated in an urban park (Robin’s Park) in September. A month later (late October, 2019) a specimen was photographed in nearby mainland British Columbia (White Rock, BC). Around that time, the same beekeeper in Northern Bellingham, Washington observed Asian giant hornets attacking a hive. The last sighting of the Asian giant hornet occurred near Blaine, Washington in December of 2019, when a dead specimen was collected and a live specimen was spotted at a hummingbird feeder.

Update June, 2020: Small numbers of AGHs have been reported in North America—but only in the pacific Northwest. 


4) Have Asian giant hornets become established in North America?
The ability of the Asian giant hornet to survive and spread in North America is not understood at this time. In its native range, the Asian giant hornet is associated with forested and low mountainous areas with temperate or subtropical climates.  A key unanswered question at the moment is: have the Asian giant hornets successfully overwintered in North America? Update 5/27: we recently learned that AGHs have made it through the winter.  This species recently resurfaced, as reported in the New York Times.

Asian giant hornets overwinter as queens.  If previously fertilized, queens attempt to establish nests during the spring months. Established nests won’t produce the next batch of queens to carry on their “blood lines” until mid-fall, meaning that responders monitoring the situation in the Pacific northwest will have roughly half a year to hunt down any nests. For this reason, 2020 will be a critical “make or break” year in the story of the Asian giant hornet in North America.

Responders in the Pacific Northwest have plans to monitor for Asian giant hornets with traps and visual methods. If spotted, individual hornets can potentially be tracked back to their nest to allow responders to eradicate the colonies. Full details of the USDA response plan can be viewed here.


5) Health risks to humans are low
By referring to the Asian giant hornet as “murder hornets”, recent news stories have given the false impression that these insects pose a regular threat to humans. Many stories have repeated the claim that Asian giant hornets kill around 50 people a year in Japan, where these hornets naturally occur. In reality, the actual numbers are much lower. Based on publicly available data from the Japanese e-Stat statistics portal, from 2009-2018 an average of 18 deaths were reported annually in Japan from hornets, wasps, and bees combined. For comparative purposes, roughly twice as many annual deaths (average of 35) were reported as the result of slipping and drowning in bathtubs over that same period of time.

Annual Deaths in Japan due to hornets, wasps and bees. Data source: Japan e-State website (https://www.e-stat.go.jp/en)

Nonetheless, Asian giant hornets do have potent venom and 1/4 inch-long stingers, which pack a punch.  Due to their large physical size, a relatively large volume of venom can be injected leading to painful stings. If many stings occur (such as if one were to disrupt a nest), medical attention is advised.


6) Are there any look-alikes?
While we don’t have Asian giant hornets in Wisconsin or the Midwest, we have plenty of other insects that are currently being mistaken for the Asian giant hornet or could be mistaken for these hornets later this year. Panicked individuals thinking they’ve found an Asian giant hornet might end up killing native, beneficial insects which pose little risk to humans—such as bumble bee queens, which are currently trying to establish their nests for the year.

Historically, the UW Insect Diagnostic Lab receives many suspected reports of Asian giant hornets every year—all of these have been misidentifications by the submitters. To date, no confirmed sightings of the Asian giant hornet have occurred in Wisconsin or the Midwestern US. However, with the media spotlight on the Asian giant hornet, an increase in false reports is expected at the UW Insect Diagnostic Lab this year.  Click the diagram below to view a

Asian giant hornets and common look-alikes of the Midwest. Diagram organized by PJ Liesch, UW Insect Diagnostic Lab. Click for larger version.

full-size version.

 

Some of the commonest look-alikes include:

Cicada Killer Wasps (Sphecius speciosus) These are the closest match in terms of size. However, these solitary ground-nesting wasps are really quite harmless, unless you happen to be a cicada... Because these insects don’t have a colony to defend, they are very unlikely to sting.  This is the top look-alike reported to the UW Insect Diagnostic Lab every year. For additional details see this post: Asian Giant Hornets—Nope!

Great Golden Digger Wasps (Sphex ichneumoneus) These solitary ground nesting wasps capture and feed katydids and related insects to their young.  Because these insects don’t have a colony to defend, they tend to be docile.

Pigeon Horntails (Tremex columba) These primitive wasp-like insects develop inside of decaying trees as larvae and can be common.  They are not capable of stinging, but females do possess a prominent egg-laying structure (ovipositor).

Elm Sawflies (Cimbex americana) These plump, wasp-like insects cannot sting. The caterpillar-like larvae can feed on elms, willows, birches, and other hardwood trees.

Bumble Bees (Bombus spp.) The Midwest is home to over 20 species of bumble bees. These beneficial pollinators play important roles in the ecosystem. Bumble bees do live together as colonies and can act defensively if the nest is directly disturbed, but these important pollinators are generally docile. Annual colonies reach maximum size in late summer and naturally die out in the fall.

Yellowjackets (Vespula spp. & Dolichovespula spp.) The Midwest is home to more than 10 species of yellowjackets. Common species, such as the German yellowjacket (Vespula germanica) are typically around ½ inch in length. Yellowjackets are social insects and depending on the species, nests can occur in the ground, in hollow voids (such as soffit overhangs or wall voids), or as exposed as papier-mâché type aerial nests. Annual colonies reach maximum size in late summer and die out naturally in the fall.

Bald-Faced Hornets (Dolichovespula maculata) Our largest social wasp in the Midwestern US, reaching lengths of approximately ¾ inch. Bald-faced hornets are technically a type of “yellowjacket” but have a distinctive black and white appearance. These insects create large papier-mâché type nests, which can approach the size of a basketball. Annual colonies reach maximum size in late summer and die out in the fall.

Insect Diagnostics in the Age of COVID-19

Since early 2020,  COVID-19 has changed the ways that Americans go about their everyday lives. Here in Madison, WI, the University of Wisconsin-Madison has taken a number of steps in response to the COVID-19 situation such as switching to online classes and having most employees work remotely. The full details of UW-Madison’s response can be found here: covid19.wisc.edu.

Despite the disruptions, part of the Wisconsin Idea is that the activities of institutions like UW-Madison should provide benefits to residents in all reaches of the state. To that end, the UW Insect Diagnostic Lab remains open to provide insect/arthropod identification and outreach services to residents of Wisconsin, with some notable changes. Bookmark this page for updates which will be posted as they arise.

General Diagnostics & Questions:
Many of the services of the IDL, such as email photo submissions, remain unchanged. Important points are noted below:

  • Arthropod ID requests (insects, spiders, etc.) can still be submitted to the UW Insect Diagnostic Lab
  • Digital photographs are the best way to submit an ID request in the time of COVID-19. See this webpage for required information and tips on submitting insect images.
  • Visitors are not allowed in the diagnostic lab at this time.
  • Physical samples  are still accepted by mail, UPS, FedEx or other couriers.  Please see this webpage for instructions on how to submit physical samples by mail.
  • General insect questions can still be submitted by email to pliesch@wisc.edu (best option) or by phone. I will continue to have regular email access while working remotely, but phone responses will likely be delayed.  Email will be the best way to reach me for the time being.

Outreach:
The UW Insect Diagnostic Lab regularly provides outreach around Wisconsin via public radio, workshops, public seminars, and other venues. Unfortunately, the COVID-19 situation is impacting in-person delivery of this outreach. See below for additional details:

  • In-person presentations provided by the UW Insect Diagnostic Lab have been cancelled until further notice.
  • If interested in distance education (via Zoom, Skype, Google Hangouts, etc.), feel free to reach out to me by email (pliesch@wisc.edu).

In the meantime, stay safe and feel free to check out the many insect-related blog posts over the last few years to take your mind off of COVID-19: https://insectlab.russell.wisc.edu/blog/

Current auxiliary location of the UW-Insect Diagnostic Lab.

Blister Beetles—Unexpected Wisconsin Connections

Despite being winter, Wisconsin has recently been in the news because of insects—blister beetles—and their potentially deadly impacts on horses.  In addition to their medical significance, these insects have a long and interesting story with some surprising twists.

Margined blister beetle (Epicauta funebris). Photo credit: Johnny N. Dell, Bugwood.org.

Blister beetles comprise a diverse family of insects (Family Meloidae), with over 3,000 species known from around the globe. In the Unites States, we’ve got approximately 400 species, with the bulk of the diversity centered in the dry southwestern part of the country. However, this group is widely distributed across the lower 48 states, with nearly 30 species known from Wisconsin alone.

The common blister beetles species of the Upper Midwest are oblong and typically range from ½-inch to ¾-inch long, although other species can vary in size. Unlike the stereotypical “crunch” of most other beetles—think of accidentally stepping on a May/June beetle—blister beetles have softer bodies and are similar to fireflies in this regard. A few of our Midwestern species are striped or brightly colored, but many common species are dark-colored, being mostly black, grey, or a dark metallic green.

But don’t let their drab appearance fool you. Blister beetles wield a potent defensive toxin—cantharidin. In adult blister beetles, this compound is produced by males, which provide it to females during courtship. Females then use it to chemically protect their eggs.

An antique apothecary jar hints at the long medical history of cantharidin. Photo Credit: Hamburg Museum, via Wikipedia

The properties of cantharidin are well-known, and this chemical irritant and its coleopteran source have a surprising history dating back thousands of years. For example, Pliny the Elder knew of the toxic effects and mentioned blister beetles in his writings. Old medical reference books list a number of potential uses for cantharidin, ranging from the treatment of skin conditions to a supposed remedy for baldness. However, cantharidin might have harmed more than it helped. Dermal exposure has long been known to cause irritation and blistering—hence the common name of “blister beetles”. If ingested, symptoms can be much more serious: severe irritation of the gastrointestinal and urinary tracts, kidney and heart damage, and a cascade of other undesirable effects. Human deaths have been recorded in the medical literature and in a recent report, a soldier consumed a single blister beetle on a dare and ended up hospitalized with acute kidney injury.

Surprisingly, cantharidin was also historically deployed as an aphrodisiac—Spanish fly. In the days before the little blue pill, Spanish fly was known for its ability to irritate the urethral lining to produce a “stimulating” effect.  In one historical report, French Legionnaires in North Africa complained of priapism after feasting upon frogs that had happened to eat blister beetles (frogs seem to be unaffected by cantharidin).

Humans aren’t the only creatures affected by blister beetles and horses are especially sensitive. Ingestion of only a few grams of cantharidin can potentially be lethal to an adult horse. Blister beetle poisoning is rare in equines, but can occur if the adult beetles happen to be in an alfalfa field feeding on blossoms at the time of harvest and are crushed by farm equipment. In an unfortunate situation, blister beetles have recently been reported in connection with the deaths of over a dozen horses in Mauston, Wisconsin.

Robert “Fighting Bob” La Follette, governor of Wisconsin (1901-1906), was known for his progressive politics and impressive head of hair. Photo via Wikimedia Commons

Blister beetles have another noteworthy Wisconsin connection from the history books. The former governor of Wisconsin, Robert “Fighting Bob” La Follette, was well-known for his progressive politics as well as an impressive head of hair. His secret?—a hair tonic containing cologne, oils of English lavender and rosemary, and a cantharidin-containing tincture made from blister beetles.

Beetlejuice on the brain?

Elongate Hemlock Scale: The Grinch Trying to Ruin Christmas

Christmas has come and gone in 2019, but an uninvited Grinch may still be lurking to steal the holiday spirit. The Grinch in this case isn’t the green gremlinesque being of Dr. Suess, but a tiny invasive insect known as the elongate hemlock scale (EHS). The elongate hemlock scale (Fiorinia externa) is native to Japan and was first detected in the US in Queens, New York over a century ago. Since that time, EHS has spread to 15 states in the eastern US.

A heavy infestation of elongate hemlock scales.  Heavy infestations can have significant impacts on conifers.  Photo Credit: Eric R. Day, Virginia Polytechnic Institute and State University, Bugwood.org.
A heavy infestation of elongate hemlock scales. Heavy infestations can have significant impacts on conifers. Photo Credit: Eric R. Day, Virginia Polytechnic Institute and State University, Bugwood.org.

Elongate hemlock scale attacks over 40 species of conifers—especially hemlocks which can be common throughout the Appalachian Mountains, and Fraser firs and balsam firs, which are commonly grown as Christmas trees. Certain types of spruces and pines can also be attacked. Established populations of elongate hemlock scale are not known from Wisconsin, but a recent detection of this pest in the state raises concerns for Christmas tree growers, the plant nursery industry, tree care professionals, and homeowners with conifer trees in their yards. Forested areas are also at risk, meaning the stakes are potentially high with this insect.

While insect activity is quiet in the Midwest this time of the year, we’re hearing about the elongate hemlock scale now due to its Christmas connection. Similar to 2018, the Wisconsin Department of Agriculture, Trade and Consumer Protection recently found that fir Christmas trees, wreaths, and other holiday decorations infested with EHS had been shipped to Wisconsin from North Carolina. The picturesque Blue Ridge Mountains of western North Carolina provide ideal habitat for Fraser firs—one of the most popular species of Christmas trees. North Carolina grows approximately a quarter of all the Christmas trees sold in the US each year and with elongate hemlock scale established in that state, it increases the risk of movement of this invasive insect around the country.

The Blue Ridge Mountains near the border of North Carolina and Tennessee—the native habitat of Fraser firs. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.
The Blue Ridge Mountains near the border of North Carolina and Tennessee—the native habitat of Fraser firs. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.

Elongate hemlock scales look unusual as far as insects go. These insects have traded mobility for defense—they hunker down on plants and produce a waxy coating which helps protect them from predators and parasites. As a result, elongate hemlock scales aren’t easily recognizable as insects since the usual signs of segmentation—body regions, legs, antennae—are not readily visible. Instead, these insects have a vague, oblong appearance. Adult females are small (just under 1/10th of an inch long) and are covered with a waxy brownish coating. They are typically found on the undersides of needles. Males are slightly smaller and develop beneath pale whitish coverings. Mature males do emerge with wings but are weak fliers and travel short distances to mate with the wingless, immobile females.

Two adult female elongate hemlock sales on the underside of a fir needle. Females are approximately 2 mm long. Photo Credit: Lorraine Graney, Bartlett Tree Experts, Bugwood.org

Under their protective coatings, these insects use needle-like mouthparts to suck fluids from plants. With their small size, damage occurs when large numbers of individuals infest plants. Their waxy coverings also limit the effectiveness of insecticides, making EHS a challenging pest to control if they become established.

Because elongate hemlock scale has been detected in Wisconsin this year in Christmas trees and other holiday decorations, a key objective at this point is to prevent this insect from getting a foothold in the state. By all means, continue to enjoy your holiday decorations, but when you’re ready to remove these materials, take the following steps to help prevent this insect from becoming established in Wisconsin:

1) If your Christmas tree or natural wreaths, garlands, or other decorations are from a local Christmas tree farm or elsewhere in Wisconsin, no special precautions are needed for elongate hemlock scale. Because EHS is not established in the state, these materials can be removed as usual at the end of the holiday season.

2) If your Christmas tree or natural wreaths, garlands, or other decorations are from a big box store, grocery store, or similar vendor, or if you are not sure of the origins of these materials, it is advised to check these materials for signs of elongate hemlock scale (i.e., brown spots on the undersides of needles). The Wisconsin Department of Agriculture, Trade, and Consumer Protection is advising that infested or suspect materials preferably be burned (check with the DNR for any burning restrictions in your area). Alternatively, such materials could be bagged and discarded as waste. Infested or suspect materials should not be composted or used for wildlife habitat in your yard.


For additional information on elongate hemlock scale, visit the WI-DATCP EHS page and the recent press release about the 2019 EHS detection.

5 Things to Know About Eastern Equine Encephalitis

Every year is different when it comes to mosquito-borne diseases.  During the summer and fall of 2019, the eastern US has seen a bump in cases of a potentially lethal disease—Eastern Equine Encephalitis (EEE)—which has led to health concerns. Here are five key things to know about Eastern Equine Encephalitis:


1. Eastern Equine Encephalitis is a mosquito-borne disease. But one species in particular, Culiseta melanura, plays a critical role.  Culiseta melanura is widely distributed across the eastern US, but is specifically associated with freshwater swamps with standing trees.  The larvae of this mosquito tend to develop in small, protected, naturally occurring cavities (“crypts”) amongst the roots of trees such as maple, hemlock, and cedar.  Interestingly, Culiseta melanura, does not like to bite humans and almost exclusively takes blood meals from birds.  However, as EEE builds up in local bird populations, other mosquito species with more flexible feeding habits can act as a “bridge” and allow the disease to move from birds to mammals with subsequent blood meals.  A dozen or more mosquito species from the genera Aedes, Coquillettidia, Culex, and Ochlerotatus have been implicated in vectoring the disease from birds to humans.

The mosquito Culiseta melanura
Culiseta melanura—a key player in the Eastern Equine Encephalitis story. Photo Credit: CDC Public Health Image Library.

2. Eastern Equine Encephalitis can pose significant risks to human health, but most human infections result in minor or no symptoms.  Eastern Equine Encephalitis is a disease caused by a virus (the Eastern Equine Encephalitis Virus).  According to the CDC, only a small percentage (4-5%) of human infections with this virus actually lead to Eastern Equine Encephalitis.  Thus, the vast majority of human infections lead to minor or no symptoms. 

However, in severe cases of EEE, inflammation of the brain can lead to symptoms including fever, headache, vomiting, confusion, convulsions, and coma.  Roughly a third of such human cases are fatal and survivors often suffer from permanent neurological complications.  Individuals younger than 15 or older than 50 are at greatest risk, as well as individuals that live, work, or recreate near swampy areas. In the US, cases of EEE tend to occur in states along the Atlantic coast and the Gulf coast.  The New England states of Connecticut, Massachusetts, and Rhode Island have seen nearly 20 human EEE cases this year.  Cases can also occur in the Midwest, with a cluster of nearly a dozen reports in southwestern Michigan and northern Indiana in 2019.

3. Humans aren’t the only species impacted by Eastern Equine Encephalitis.  In fact, EEE is primarily a bird disease.  For example, many passerine birds (a group that includes our common songbirds such as robins and starlings) can readily become infected with the EEE virus. Some states even use “sentinel” birds to monitor EEE activity.  If the conditions are right in a given year, populations of the ornithophilic mosquito Culiseta melanura can cause EEE to build up in a local bird population.  Eventually, other mosquito species allow the disease to jump from birds to humans.  Horses can also become infected with the EEE virus and because equine infections typically precede human cases by a few weeks, an uptick in horse cases can serve as a general indicator of potential risk to humans in an area.  There is a vaccine available for horses to help protect them from EEE.

Cedar swamp in New Jersey.
Cedar swamp in New Jersey. Photo Credit: Famartin, via Wikipedia. CC 3.0.

4. Eastern Equine Encephalitis is very rare in humans.  Case numbers vary around the eastern US every year, but over the last decade the country has averaged only seven human EEE cases per year.  In Wisconsin, there have only been three documented human cases of EEE between 1964 and 2018.  The limited habitat of the key mosquito species and its restricted feeding behaviours help explain the rarity of human cases.  Despite news reports within the last month, the EEE threat should nearly be done for the year in the Upper Midwest.  Eastern Equine Encephalitis cases typically peak in late summer or early autumn, and with temperatures dipping in the region (and snow in the forecast), mosquito activity is on the decline in our area.

5. General mosquito precautions are one of the simplest ways to protect against Eastern Equine Encephalitis.  Because the key mosquito species involved with EEE (Culiseta melanura) is associated with freshwater swamps, chemical insecticide treatments to such areas are often not an option for individual land owners and can pose environmental concerns.  Instead, practices such as wearing long-sleeved clothing, using EPA-registered repellents (such as DEET and picaridin), avoiding areas and periods of high mosquito activity, and removing standing water on a property are some of the best precautions to take.


Update September 2020: Wisconsin has recently had two confirmed human cases this year.