Category Archives: Crop Pests

Asiatic Garden Beetles Collected in Wisconsin for the First Time

Serendipity can play a big role in being an entomologist or any kind of naturalist. Sometimes, you’re simply in the right spot at the right time to make an interesting observation or scientific discovery. There’s lots to learn about the natural world around us and plenty of room for discoveries.

Think about birds for a moment. According to the Wisconsin Society for Ornithology, there are 441 species of birds known from the state. Birders can spend an entire lifetime learning about the biology and habits of these species and how to identify them by sight, song, and other features. Now, think about insects. Here in Wisconsin, our best estimate is that we have somewhere in the ballpark of 20,000 insect species in the state (let alone all the other arthropods!). During talks to the public, I often joke that birders have it easy—with so many insects out there, you could have ten lifetimes and still have plenty to learn and discover!

With that said, there’s lots to be discovered in the world of insects. Even though I’ve been collecting and studying these creatures for over 15 years, I still make discoveries on a regular basis. This often requires hours of diligent observations and the ability to focus on the tiniest of details, but in other cases it comes down to plain old luck. For example, I’ve written about discovering and collecting specimens of the rare fly, Asteia baeta, in my house after setting up a Christmas tree (no such luck this year…).

Photo of adult Asiatic garden beetles
Asiatic garden beetle adults. Photo credit: Emmy Engasser, Wichita State University, Bugwood.org.

A more recent example of entomological serendipity occurred this last July in my own backyard in Dane County. I was enjoying a cold beer on our back deck one warm evening  when I noticed a few small scarab beetles on our window screens. Since I keep a lookout for invasive species as part of my job at the UW Insect Diagnostic Lab, I always have a list of species in mind that I’m keeping an eye out for. In this particular case, the beetles piqued my interest due to their resemblance to the non-native Asiatic garden beetle (Maladera formosae), although we have native species in the genus Serica that can look similar to the naked eye. Just a few weeks before this, I had identified some specimens of the Asiatic garden beetle from a suburb of Chicago, which placed the species on my immediate radar.

Hold my beer, I’m getting some vials. I collected all the specimens I could spot (4), and was able to confirm their identity as the Asiatic garden beetle after tracking down appropriate keys and dissecting out the male genitalia—a surprisingly common and delicate entomological task used to distinguish certain insects that look similar. While I’ve seen a possible report of the AGB on iNaturalist, the specimens from my back deck marked the first specimens of the Asiatic garden beetle collected and confirmed from the state of Wisconsin.

Adult Asiatic garden beetles colleted in Wisconsin.
A few of the Asiatic garden beetle specimens known from Wisconsin. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

The Asiatic garden beetle first showed up in the United States in New Jersey in the early 1900’s and has spread westward ever since. This species is a notable pest and feeds on a wide range of plants. The adult beetles are “sneaky”—hiding by day and causing most of their damage after dark. They are primarily active on warm evenings (>70˚F) and can be strongly attracted to lights. In this case, not only was I enjoying a cold beer on a warm summer night, but the string of patio lights over our deck likely attracted the beetles from the nearby area. The larvae (white grubs) can be pests of turfgrass, home gardens, and agricultural crops such as corn and potatoes.

Adult Asiatic garden beetle and plant damage.
An adult Asiatic garden beetle and feeding damage on a landscape plant. Photo credit: Whitney Cranshaw, Colorado State University, Bugwood.org.

At this point, I have many more questions than answers about the Asiatic garden beetle and what the future holds for this species in Wisconsin. To date, only a handful of specimens have been collected (four in July and another specimen in mid-September) and no plant damage has been observed. However, I’ll be keeping a close eye on this species, since reports from nearby states suggest that we may be seeing more of this species and damage in the coming years.

Fall Armyworms: A Late Summer Surprise in Wisconsin

It’s been hard to miss the recent news headlines about fall armyworms “FAW” (Spodoptera frugiperda). States east of the Rockies have seen historical outbreaks of this insect in 2021, including a bit of fall armyworm activity here in Wisconsin. In some cases, the caterpillars have decimated entire crop fields or home lawns overnight before marching onwards in search of “greener pastures”.

We usually don’t see much of the fall armyworm in Wisconsin and it’s primarily a pest of warmer areas, such as the gulf coast states.  The FAW is native to tropical and subtropical parts of the western hemisphere and the larvae (caterpillars) can feed on dozens of different types of plants—ranging from field crops to fruits and vegetables and even turfgrass. They can be particularly important pests to crops such as corn, grains, and alfalfa.

Fall armyworm caterpillar
Fall armyworm caterpillar. Photo credit: Frank Peairs, Colorado State University, Bugwood.org.

The fall armyworm can’t survive the winters in the US, other than the southernmost areas (e.g., southern Texas and Florida). However, in spring and summer the adult moths migrate northwards and lay eggs. Over the course of many generations and subsequent northward migration, fall armyworms can make it to the upper Midwest and even parts of southern Canada. Historically, fall armyworm has rarely been a notable pest in Wisconsin or the upper Midwest—it simply arrives too late or in too small of numbers to be a concern. To a certain extent, every year is a roll of the dice, but the odds are usually in our favor in Wisconsin and other northern states.

Fall armyworm adult moth
Fall armyworm adult moth. Photo credit: Lyle Buss, University of Florida, Bugwood.org.

This year has been different though, with large numbers being spotted northwards and reports of significant damage coming in from nearby states such as Illinois, Indiana, Iowa, and Ohio. Many other states ranging from Kansas to the mid-Atlantic region have also been impacted in the later parts of summer. While there have been scattered reports of fall armyworm damage to field crops in southern parts of Wisconsin, the lateness of this pest’s arrival and our declining temperatures have likely spared us from the widespread damage seen in other states.

Under hot conditions (e.g. temps in the 90’s), the life cycle of the fall armyworm—from eggs to adult moths—can take only a few weeks. However, fall armyworms are “cold blooded” creatures and cooler temperatures slow down their growth and development. Depending on how chilly it is, their life cycle can be “stretched out” to take 60 days or longer—leaving them much more vulnerable to predation, parasitism, or exposure to frosts.

Eggs of the fall armyworm
Fall armyworm eggs from a residential yard. Photo submitted to UW Insect Diagnostic Lab in September, 2021.

One study* found that fall armyworm eggs didn’t hatch at all if temperatures were cool enough (though not particularly chilly by Wisconsin standards). That particular study simulated daytime/nighttime temperatures of 21˚C (70˚F) and 8˚C (46˚F)—temperatures that are “in the ballpark” for many parts of Wisconsin by mid-September and are often considered downright “pleasant” by Wisconsinites.  Eggs held at warmer temperatures in the experiment hatched just fine.

For eggs that did hatch this year in Wisconsin, cool temperatures also could have helped us out by slowing down their development. As they grow, fall armyworms pass through six sub-stages (instars). The early instar caterpillars are so small, they simply can’t eat much and cause little damage. It’s not until FAW caterpillars become more mature fifth and sixth instars that they really start to chow down and cause significant damage to plants. Thus, falling temps could help prevent the fall armyworm caterpillars from making it to the destructive late instar stages and could also leave them more exposed to a variety of threats.

Chart showing quantity eaten by fall armyworm larval instars.
Graphic representation of the amount eaten by fall armyworm caterpillars in an early USDA experiment. Early instar caterpillars eat little compared to late instars. Cool temperatures limiting their development could help prevent damage by the FAW. Credit: USDA Technical Bulletin No. 34

The fall armyworm outbreak of 2021 could very well be a “once every few decades” type of event, and our northern location likely helped us avoid the significant problems seen in other states. However, if changing climate gives the fall armyworm a “head start” by overwintering farther north, it’s possible that we could see more of this pest in Wisconsin in the future.


*Barfield, Mitchell, and Poe. 1987. A Temperature-Dependent Model for Fall Armyworm Development.  Annals of the Entomological Society of America. 71(1): 70-74.

Spotted Lanternfly: The Next Big Pest in Wisconsin?

Is the invasive spotted lanternfly (Lycorma delicatula) poised to be a problem in Wisconsin? Only time will tell, but the threat is definitely real.

Spotted lanternfly adult
Adult spotted lanternfly. Photo credit: Emelie Swackhamer, Penn State University, Bugwood.org

What is the spotted lanternfly?
If you haven’t heard of the spotted lanternfly (SLF) before, it may be because this insect hasn’t been spotted in the upper Midwest yet. This invasive planthopper is native southeast Asia and was first spotted in the US (eastern Pennsylvania) in 2014. It has since spread to nearby states in the eastern part of the country. This plant-feeding pest poses significant concerns for both agricultural producers and the general public.

What do spotted lanternflies look like?
Spotted lanternfly adults and juveniles have a unique appearance and can easily be distinguished from our native insects. Adults are roughly 1 inch long with grey and black spotted forewings and bright pink patches on the hindwings; their abdomen is black and yellow. Although they have wings, adults are generally weak fliers and tend to walk or hop. The wingless juveniles (nymphs) are smaller than adults and are mostly black with white spots. When nearly mature, juveniles are red and black with white spots.

In contrast to the conspicuous adults and juveniles, the eggs have a subdued appearance. The small, brownish, seed-like eggs are laid in batches of 30-50 and are covered with a grayish putty-like material. These egg masses can resemble dried mud.

 

What is the life cycle of the spotted lanternfly?
The spotted lanternfly has one generation per year. In late summer, SLF females deposit egg masses containing 30-50 seed-like eggs on trees or other objects. After making it through the winter, the eggs hatch in late spring and juveniles emerge. Juveniles can’t fly, but can walk or hop on plants. The juveniles feed and grow over the course of two months before transforming to adults in mid-summer. Adults are present into the fall as they feed, mate, and lay eggs.

What do spotted lanternflies feed on?
Spotted lanternfies are plant feeders. Their preferred host plant is the invasive tree-of-heaven (Ailanthus altissima), which occurs in its native range in China. However, this pest is known to feed on over 100 different plants. Certain agricultural crops can be attacked, including: hops, pome fruit (apples, pears, etc.), stone fruit (peaches, plums, cherries, etc.), nut trees, grapes, and others. The spotted lanternfly can also feed on a wide range of landscape and forest trees and shrubs which can pose concerns for plant nurseries, homeowners, landscapers, and tree care professionals. Tree and shrub species known to be attacked include: maples, oaks, hickories, walnuts, cherries, catalpa, willows, serviceberry, roses, lilacs, and many others. Spotted lanternflies can feed gregariously and hundreds or thousands of individuals are sometimes spotted on tree trunks or branches.

What type of damage to they cause?
When SLFs feed, they use needle-like mouthparts to pierce plant structures to drink sap. Not only does this wound plants and create potential entry points for disease pathogens, but wounds may continue to ooze for some time—creating an unsightly mess. Significant feeding could cause dieback of branches of trees or shrubs and reduce yields of agricultural crops. The presence of SLF adults at the time of harvest could also pose a potential contamination concern for certain crops. In addition, spotted lanternflies excrete honeydew (undigested sugars) in their waste, which can lead to the growth of black sooty mold on the trunk or base of trees.

Aggregation of spotted lanternfly adults and damage at base of tree
Aggregation of spotted lanternfly adults, oozing feeding wounds, and growth of black sooty mold at base of a tree. Photo credit: Emelie Swackhamer, Penn State University, Bugwood.org

What’s the invasion risk from spotted lanternfly?
There’s significant concern about the spread of the spotted lanternfly. Since the first detection in Pennsylvania in 2014, this insect has already spread to many other states in the eastern US. Overall, spotted lanternflies mostly walk or hop (adults are weak fliers), but they are good at “hitchhiking” which may contribute to their spread; eggs are of particular concern. Egg masses are often laid on plant materials (e.g. tree trunks), but they can also be laid on man-made objects such as pallets, crates, automobiles, trailers, and other items. With their subtle appearance, egg masses can easily be overlooked and could be transported long distances. The movement of eggs could end up playing an important role in the spread of this insect over time.

A 2019 study evaluated potential spotted lanternfly habitat in the United States. The Midwest (including parts of Wisconsin) is expected to be good habitat for this invasive insect, highlighting the importance of early detection of this pest. If you suspect you’ve found the spotted lanternfly in Wisconsin: please take pictures, save any specimens you find, and contact me at the UW Insect Diagnostic Lab.


For additional information about the spotted lanternfly, check out these resources from the UW-Madison Division of Extension and the Wisconsin Department of Agriculture, Trade and Consumer Protection.

https://youtu.be/wVmuKwreYdU

2018’s Top Trends from the Diagnostic Lab (Part 2)

In this post, we’re continuing to count down the University of Wisconsin Insect Diagnostic Lab’s top arthropod trends of 2018. This is the second half of a two part series; the first half can be found here.


5) White-Lined and Other Sphinx Moths:
The white-lined sphinx moth (Hyles lineata) can be a common species, so encountering one of the 3 inch long hornworm caterpillars isn’t unusual. However, these caterpillars can also be encountered in massive road-traversing hordes if the conditions are just right. From midsummer onwards, large numbers of these caterpillars were observed around the state—in some cases by the tens of thousands. If you didn’t spot any of the caterpillars themselves, you might have encountered the large adult moths with their hummingbird-like behaviour in late summer. Several other sphinx moths species also had a strong presence in 2018, such as the clearwing hummingbird moths and the tobacco and tomato hornworm caterpillars which can regularly be encountered in gardens as they munch away on tomato and pepper plants.

Large, dark-colored hornworm caterpillar of the white-lined sphinx moth on a plant
Large, dark-colored hornworm caterpillar of the white-lined sphinx moth. Photo submitted by Ted Bay, UW-Extension

4) Sawflies:
Sawflies, the caterpillar copycats of the insect world, are a diverse group, so they’re always present to some extent. Last year saw an unexpected abundance of two particular types in Wisconsin—the dogwood sawfly and the non-native Monostegia abdominalis, which feeds on creeping Jenny and related plants from the loosestrife group (Lysimachia species). While sawflies are plant feeders, dogwood sawflies can also damage the soft wood of a home’s siding or trim when these insects excavate small chambers to pupate in. The UW Insect Diagnostic Lab saw a distinct bump in reports of wood damage from the dogwood sawfly last year.

Whitish larva of the dogwood sawfly curled up on a dogwood leaf
Larva of a dogwood sawfly showing the whitish, waxy coating. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

3) Armyworms:
True armyworms (Mythimna unipuncta) can be a dynamic and sporadic pest in the Midwest. This species doesn’t survive the cold winters of our area, so adult armyworm moths must invade from the south each spring. Depending on national weather patterns, the arrival of the adult moths can vary significantly from year to year. If an early mass arrival is followed by abundant food and ideal conditions for the ensuing caterpillars, large populations can result. Once they’ve arrived, true armyworms can go through 2-3 generations in the state and this second generation of caterpillars made an alarming appearance in mid-to-late July. Under the conditions last summer, massive hordes of these caterpillars decimated crop fields before marching across roads by the tens or hundreds of thousands to look for their next meal. In some cases, that next meal included turfgrass, meaning that some Wisconsinites came home from work to biblical hordes of caterpillars and half-eaten lawns in late July.

Striped caterpillar of the true armyworm
Caterpillar of the True Armyworm (Mythimna unipuncta). Photo Credit: Lyssa Seefeldt, University of Wisconsin-Madison Extension

2) Monarch Butterflies:
Much to the delight of fans and conservationists, the iconic monarch butterfly (Danaus plexippus) appeared to have a banner year in the Midwest in 2018. Reports and observations of high numbers of monarchs poured into the Insect Diagnostic Lab during the summer months. As comforting as these reports were, the butterflies still faced a perilous 2,000 mile journey to reach their overwintering grounds in Mexico.  The most consistent measurement of the eastern monarch population comes from estimating the area occupied by the densely-packed overwintering butterflies.  In late January the latest count was released with encouraging news—the eastern monarch population is up 144% over last year and is estimated to be the largest in over a decade.  In contrast, the western monarch population overwinters in southern California and has recently dipped to alarmingly low numbers. Regardless of the winter assessments, monarchs face tough challenges and Wisconsinites are encouraged to help conserve this iconic species.  The Wisconsin Monarch Collaborative recently launched a website with resources for those wishing to join the effort.

Seven monarch butterflies nectaring on a flower
Multiple monarch butterflies nectaring on a single plant in August. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

1) Floodwater Mosquitoes:
Mosquitoes snagged the top spot on 2018’s list for good reason. The upper Great Lakes region is home to over 60 different mosquito species, but one subset—the “floodwater” mosquitoes—drove the storyline last year and impacted outdoor activities through much of the spring and summer months. Mosquitoes in this group, such as the inland floodwater mosquito (Aedes vexans), flourish when heavy rains come. Last year’s mosquito season kicked off in force with a batch of pesky and persistent floodwater mosquitoes just before Memorial Day weekend. Mosquito monitoring traps in southern Wisconsin captured record numbers of mosquitoes shortly thereafter. Later in the year, the Midwest experienced an unprecedented series of severe rainstorms, setting the stage for an encore performance of these mosquitoes. It was this second explosion of mosquitoes that caught the attention of anyone trying to enjoy the outdoors in late summer—a time of the year when mosquitoes are typically winding down in the state.

Ephemeral pools of water created ideal conditions for floodwater mosquitoes in late summer. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

2018 Update: Brown Marmorated Stink Bug in Wisconsin

Author’s Note: Original post updated in January, 2019 due to a confirmed report in Waupaca Co. and suspected report in Oneida Co.


One of the most concerning invasive insects to appear in Wisconsin in the last decade is the brown marmorated stink bug (Halyomorpha halys).  This Asian species delivers a double-whammy of not only damaging crops and other plants, but also being a significant nuisance when it sneaks into buildings in the fall. Since its initial detection in the state in 2010, populations of this insect have built up slowly but steadily. 

Brown marmorated stink bug adult on the side of a building in fall. This is becoming a common site in some parts of the Midwest. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.

What’s the current status of BMSB in Wisconsin?

As of late 2018, 28 counties have confirmed reports of the brown marmorated stink bug and a handful of other countries have suspected sightings.  This insect has a strong foothold in the state and was confirmed in eight new counties in 2018 alone—Eau Claire, Jackson, La Crosse, Marquette, Monroe, Richland, Trempealeau, and Waupaca counties. 

Distribution of the brown marmorated stink bug in Wisconsin—updated January 4th, 2019
Distribution of the brown marmorated stink bug in Wisconsin—updated January 4th, 2019. BMSB has been confirmed in 28 counties. Map Credit: PJ Liesch, UW Insect Diagnostic Lab.

Two core areas currently stand out for brown marmorated stink bug activity in Wisconsin: the Highway 41 corridor from Fond du Lac up to Green Bay and southern Wisconsin from Dane and Rock Counties east to the Milwaukee metro area.  These two areas have the longest history of BMSB in the state and account for the majority of reports thus far. 

Much of the state has yet to encounter this insect or truly experience its impacts.  When the brown marmorated stink bug is first detected in an area, there’s a proverbial “calm before the storm”.   The pattern observed in the state thus far has been a few “quiet” years where low initial populations of this insect result in only a few sightings annually.  However, after a few years in a given area, BMSB populations build up to the point where nuisance problems around structures are noted and reports of potential plant damage begin to trickle in.

What’s the Outlook for BMSB?

Unfortunately, Wisconsin has yet to see the full impact of this invasive insect.  Observations over the last few years have found that BMSB is able to survive our winters and reproduce in the state, so this adaptable pest will most likely continue to build its numbers in the coming years. 

Over time, the brown marmorated stink bug is likely to emerge as one of the top structure-invading pests in the state alongside the likes of boxelder bugs and multicolored Asian lady beetles.  In the eastern US, where BMSB has been established for over a decade in spots, problems can be significant.  In some cases these malodorous insects have been documented invading homes by the tens of thousands

Several brown marmorated stink bug juveniles on a dogwood shrub. Ornamental trees/shrubs, vegetables, and fruit crops can all be attacked by this insect. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.

While widespread crop damage has not yet been observed in Wisconsin, it may only be a matter of time as population of this insect continue to build in the state.  Agricultural problems have also been significant in the eastern US, giving us a glimpse into what could potentially happen in coming years.  For example, brown marmorated stink bug caused $37 million dollars in losses to apples in the mid-Atlantic states in 2010 alone.  

Having been detected in Portage County in 2017, brown marmorated stink bug may soon start to pose a threat to vegetable production in central Wisconsin.  Similarly, specimens confirmed from Door County in 2017 are forcing fruit growers in that part of the state to keep a close watch on their orchards and vineyards.  With the recent detection of BMSB in several western Wisconsin counties, we’ll likely see BMSB populations slowly build in that part of the state over the next few years as well. 

What should you do?

Chinch Bug: How a Tiny Insect Helped Wisconsin Become the Dairy State

It was over 170 years ago that Wisconsin was granted statehood.  While much has changed over the decades, some things haven’t—like the omnipresence of agriculture.  It’s hard not to notice agriculture in Wisconsin, be it crop fields, orchards and vineyards, or our famous dairy farms dotting the landscape.  To many, Wisconsin is practically synonymous with dairy, and America’s Dairyland is even enshrined on our license plates.  While Wisconsinites may take our dairy prominence for granted, it turns out we weren’t always the Dairy State—at one point in history, you might have even called us the Wheat State.

It’s easy to understand why Wisconsin has a long history of agriculture.  The region received an influx of rich soil with the last ice age which allowed us to become a top wheat producer in the early days of statehood.  To early farmers in Wisconsin, wheat was a profitable crop in high demand.  For a period in the 1800’s, Milwaukee was even the busiest wheat shipping port in the entire world1.  Fast forward to today and Wisconsin is best known for its dairy production, while states like Kansas, Nebraska, and the Dakotas are known for their bountiful grains.

Quote from J.G. Thompson’s The Rise and Decline of the Wheat Growing Industry in Wisconsin2

It was the mid-to-late 1800’s when the course of Wisconsin’s history was forever altered by a number of factors.  Fluctuating wheat prices and overworked soil might have been the primary drivers, but dry weather and a tiny insect also pulled on the reins of history.  Just as mosquitoes can thrive after heavy rains, other insects thrive under hot, dry conditions.  Droughts of the 1860s, 70s, and 80s set the stage for biblical outbreaks of some of these insects.  Farther to the west, fields in the Great Plains fell victim to swarms of Rocky Mountain locusts so massive that they darkened the sky for thousands of square miles.

Closer to home, the pest delivering a coup de grâce to wheat fields was the humble chinch bug, which thrived under the dry conditions at the time.  Chinch bugs aren’t much to write home about: at roughly an eighth of an inch long, most folks wouldn’t take the time to examine these tiny, black and white insects.  It was by their sheer abundance that these creatures decimated Wisconsin’s wheat fields in the 1800’s.  Using needle-like mouthparts, these insects sucked the life out of wheat plants, leaving behind wilted, yellowed stems.

The chinch bug (Blissus leucopterus). Photo Credit: David Shetlar, The Ohio State University, Bugwood.org.

When a pest outbreak occurs in a given year, a farmer might chalk it up to bad luck, bad weather, or other factors and hope things improve the next season.  With falling wheat prices and chinch bugs regularly devastating wheat crops in the late 1800’s, Wisconsin wheat farmers realized that their efforts yielded little profit.  Without an effective way to prevent the ravages of the chinch bugs, attentions shifted to more fruitful possibilities.

The first comprehensive report on the biology and habits of the chinch bug.

Understanding the biology of the chinch bug was crucial to discovering the limitations of that insect’s destruction.  It turns out that chinch bugs are picky eaters with a taste for grasses—wheat, corn, and similar.  Unrelated plants, including forage crops like alfalfa, weren’t affected by these insects and could be grown to feed livestock at the very time that the dairy industry was budding in Wisconsin.  Decades later our dairy prominence is featured on our license plates.  

When enjoying those Wisconsin cheese curds, ice cream, and other dairy treats during national dairy month, chances are you probably wouldn’t have thought about insects—but now you know how the tiny chinch bug helped make dairy a BIG deal in Wisconsin.


1Harbor and Marine Interests. History of Milwaukee City and County Vol I. Ed. W.G. Bruce. 1922. Print.

2J.G. Thompson. The Rise and Decline of the Wheat Growing Industry in Wisconsin. Bulletin of the University of Wisconsin No. 292. Economic and Political Science Series. Volume V(3): 295-544. 1909. Print.