Category Archives: IDL Highlights

A New Tool To Help Track Invasive Insects in Wisconsin

The United States Department of Agriculture (USDAdeclared April to be Invasive Plant Pest and Disease Awareness Month. To support this effort, the University of Wisconsin Insect Diagnostic Lab recently launched a new Wisconsin invasive insect mapping page to help track invasive insects in the state.

If you’ve followed this blog for a while, you’ll notice that quite a few of my posts focus on invasive insects.  Why?  In part, it’s because these non-native insects tend to be new or emerging issues and a key role of the UW Insect Diagnostic Lab is to help identify and track new and trending insects in the state. In addition, these invasive insects can sometimes cause significant damage or capture our attention for other reasons.  In a typical year, I see 2-3 new non-native insects show up in Wisconsin, which really adds up over time.  For every species that has arrived here, many more are making progress towards the state (e.g., spotted lanternfly). In other cases, non-native insects show up completely out of the blue.

What’s the big deal with non-native insects?
Non-native insects can cause harm in many different ways:
Introducing the new mapping page:

Because of the impacts mentioned above, it’s helpful to track invasive species so we can better understand where they may be having impacts, and also to get the word out about new detections and allow folks to take appropriate action.  To help in this regard, the IDL’s new invasive insect mapping page hosts a series of maps showing the known county-level distributions of a select list of invasive species.

These particular species have been included due to their relatively recent arrival in Wisconsin, and the ability to track them on a county-by-county basis.  Keep in mind that many other non-native insects can be found in the state, but some of these have been around a long time, are now widespread, and tracking on a county-by-county basis is no longer feasible or helpful (e.g., Japanese beetle, European paper wasps, German yellowjackets, European earwigs, and many more).

The maps on this page will be updated when new detections occur, and additional species maps will be added over time.  If you believe that you’ve observed one of the listed insects in a county where it has not been documented or a new invasive insect species, please collect evidence (physical specimens and/or digital images) and contact me to work on officially confirming the detection.  An example entry from the map page can be found below:

Example entry from the new Wisconsin Invasive Insects Mapping page

Insects on the Snow

Despite the season, there’s a surprising number of insects and related arthropods that can be found on the snow during the winter months here in the Midwest.  Such creatures have fascinating life histories and special adaptations (such as natural “antifreeze”or cryoprotectants) that allow them to not only survive, but remain active at low temperatures.  Even these adaptations have limitations and winter insects generally aren’t active if temperatures are below ~20˚F (-7˚C).  Most activity occurs on mild winter days when temps close to or just above freezing.

If you’re curious to learn more about the stories behind these winter creatures and others, I’d encourage you to check out Bernd Heinrich’s Winter World: The Ingenuity of Animal Survival. Read on to learn about some of our commonest “winter” insects in Wisconsin and nearby states:

Snow FleasIf you follow this blog, you might recall the example of snow fleas from two winters ago.  These dark-colored springtails (Collembola) can sometimes be abundant enough to give large swaths of snow a sooty appearance.  Snow fleas can be common on mild winter days and if I’m out cross-country skiing in the Northwoods, I’m often more surprised if I don’t spot any.

Up-Close View of a Snow Flea. Photo Credit: Daniel Tompkins via Wikipedia

Snow FliesOne of the weirdest examples of a “winter” insect would be “snow flies” from the genus Chionea.  Despite their spider-like appearance, snow flies are actually a type of wingless Limoniid crane fly.  Being wingless and generally slow moving might sound like an easy target for predators, but by being active at cold temperatures these insects can actually avoid the many predators that feed upon related flies during the warmer months.  Interestingly, their physiology is so specialized, that these unusual insects can be active between about 20˚F (-7˚C) and 32˚F (0˚C), but if it’s a warm winter day with melting snow it can actually be too hot for them!  If you’d like a more detailed look at these insects, check out J.R. Schock’s article in The Kansas School Naturalist.

Snow fly (Chionea sp.) on the snow in northern Wisconsin. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

Winter Crane FliesI occasionally get reports of “swarming mosquitoes” on winter days, and perhaps you’ve bumped into a cloud of tiny delicate flies out in the snowy woods or on a mild fall or spring day.  What you’ve likely encountered are winter crane flies (Family Trichoceridae).  These delicate flies are related to mosquitoes but have no interest in blood.  The adults are simply trying to mate and the larvae are scavengers.  

A winter crane fly (Family trichoceridae) that landed on the snow. These can be spotted flying on mild fall, winter, and early spring days. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

Snow ScorpionfliesIn my mind, one of the more elusive winter insects is the snow scorpionfly.  Despite having “scorpion” in the name, these aren’t scorpions (or true flies for that matter).  Rather, they belong to a small order of insects (Mecoptera), which includes some bizarre examples, such as the common scorpionflies, hangingflies, and earwigflies.  Like the snow flies, the snow scorpionflies are also flightless and simply wander about on the snow when conditions are right.  In the Midwest, we only have two species from this group Boreus brumalis and Boreus nivoriundus, and both species are associated with mosses.

A snow scorpionfly. Elusive, but fascinating creatures. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

Aquatic insectsIf you’re near open streams or rivers during the winter months, certain aquatic insects can sometimes emerge and be found on the snow.  Caddisflies and stoneflies are two of the commonest examples.  I recall ice climbing one winter’s night at Governor Dodge State Park west of Madison and reaching the top of a frozen waterfall only to spot dozens of adult “aquatic” insects active on the snow.  The conditions must have been just right that evening, as I also saw hundreds of tiny Cynipid wasps (from oak galls) on the snow as I descended the access trail from the climb.

Caddisfly on the snow near a Northwoods stream. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

SpidersHexapods aren’t the only arthropods getting in on the winter fun.  Species from at least a half-dozen families of spiders can occasionally be spotted on the snow on mild winter days.  They might be pretty lethargic, but it’s still interesting to see creatures like that out-and-about on the snow.  The video clip below shows a spider I spotted on the snow in Northern Wisconsin on New Year’s Eve a few years ago when the air temperature was right around 30˚F (-1˚C).

 

  

Looking back at 2021 at the UW Insect Diagnostic Lab

What a year it’s been. Things seemed like they were getting back to normal this past summer, only for the Omicron variant to pop up and say—not so fast. Despite all the ups-and-downs, services have carried on at the UW Insect Diagnostic Lab in one way or another through the second year of the COVID pandemic. Things have changed a bit and these days I’m on campus much more than a year ago. Throughout the pandemic, demand for services at the IDL has remained high with over 2,400 ID requests in 2021.

Early 2021—The UW Insect Diagnostic Lab was still mostly closed to visitors at the time. Campus services were mostly back to normal by the start of the fall semester on campus. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

Since COVID first popped up, there have been some subtle shifts in lab statistics—an increase in the percentage of samples solely involving digital images (vs physical specimens) and an overall increase in the proportion of cases coming from the public. Considering the pandemic, this makes sense. Over the last two years, campus buildings and the IDL have been closed to visitors at various points, meaning that clients couldn’t drop off samples. In other cases, it might have been tough to make it to a post office or the UPS store to ship a sample in. Likewise, with many folks working from home, it likely led to more time out in yards and gardens, or visiting local parks or hiking trails—and more time to notice insects.

Looking back at the cases from this last year, 2021 was a unique year due to our unusually hot and dry weather conditions in Wisconsin. Based on data from the Wisconsin State Climatology Office, Madison was quite warm and saw an extra ~500 growing degree days in 2021, but was down about 15 inches of precipitation for the year. Some parts of the state were even hotter and/or drier than Madison and most of the state was categorized as either unusually dry or in some stage of drought during the year [US Drought Monitor].

Drought conditions in Wisconsin as of late December, 2021. It’s been an unusually dry year around the state. Map source: Drought Monitor, UNL.

The weather conditions this year led to some shifts in the insects and related arthropods seen at the UW Insect Diagnostic Lab. A pest that had been relatively quiet the last decade, Lymantria dispar (formerly known as the “gypsy moth”), thrived with the dry conditions this past spring. In “rainy” years, a beneficial fungus (Entomophaga maimaiga) can “kick in” to help keep their numbers in check. If 2022 is another dry year, we could be in store for even more problems from this invasive species. Certain mites also thrived this year and I saw a large number of cases of eriophyid mites causing damage to plants ranging from coneflowers to garlic. Springtails weren’t necessarily more abundant (they feed on decaying plant matter and thrive under damp conditions), but I suspect the hot & dry conditions sent them looking for any place darker, damper, and cooler.  This led to lots of reports as they were trying to invade structures.

We’ll likely continue to see the impacts of the 2021 drought for some time.  Plants, including established trees and shrubs, also suffered from the drought and this will likely lead to an increase in reports of “secondary” insect pests in the next few years. Certain insects can be generally “well behaved” and leave healthy plants alone, only to attack stressed and weakened plants.  As an example, cases of the two-lined chestnut borer (a notable pest of oaks) often increase 1-3 years after a drought, and I’m expecting to see more cases in the coming years.

In the realm of medical entomology, it was a good year for ticks both in Wisconsin and other parts of the US. Black flies (Family Simuliidae) had another strong year in many parts of the state, although calls about these were shifted a bit earlier than in previous years (likely due to an “early” spring). If there’s a silver lining to the drought, it’s that mosquito pressure was down in Wisconsin for much of the summer. As we received a bit more rain in the latter half of summer we saw some late season activity, but disease pressure remained low (only three  West Nile Virus cases in Wisconsin, compared to 50+ in a “bad” year). As recreational and work-related travel increased a bit more in 2021 compared to 2020, I did see an uptick in reports of bed bugs.

With the Asian giant hornet garnering attention in the news for the second year in a row, I continued to see lots of reports of cicada killer wasps, pigeon horntails, great golden digger wasps, and other large insects.  Unfortunately, with the sensationalized hype about “murder hornets” (ahem—New York Times…) I had plenty of reports of other large harmless insects that were killed simply because they “looked big and scary” (one particular photo of a tomentose burying beetle comes to mind…).  Overall, the Asian giant hornet story was really pretty quiet this year, with a limited amount of activity in a small part of the Pacific Northwest.  As of December 2021, the Asian giant hornet has not been found in Wisconsin or anywhere close to us.

Insects like the pigeon horntail (Tremex columba) may be large (as far as insects go), but are completely harmless to humans. I saw plenty of cases where members of the public contacted me after killing such insects simply because they looked “big and scary”.  When publishers such as the New York Times use sensationalized language (i.e., “murder hornet”) there are plenty of negative impacts. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

I had plenty of reports of social wasps (yellowjackets, bald-faced hornets, and paper wasps) as well as bumble bees this year—including three reports of the endangered rusty-patched bumble bee in the same week in early August! We missed the Brood X “cicada craze” here in Wisconsin, but I still had plenty of questions about them from reporters. We will, however, see some periodical cicadas (Brood XIII) in 2024 in southern Wisconsin.

Some other IDL case highlights from 2021 include:
-An explosion of hackberry emperor butterflies in late spring in south central Wisconsin
-More black witch moths than I’ve ever seen before in a single year (over a dozen sightings!)
-First specimens of the invasive Asiatic garden beetle collected in Wisconsin
-An influx of fall armyworms in late summer, and finally
-Unexpected (live) European insect imported in a Jeep

Every year is a bit different here at the UW Insect Diagnostic Lab and 2021 was no exception.  I’ll be curious to see what 2022 has in store for insects in Wisconsin!

—PJ Liesch
Director of the University of Wisconsin Insect Diagnostic Lab

Jeep ‘Adventure’ Leads to an Unexpected Insect Discovery in Wisconsin

On average, I see 2 – 3 new, non-native insect species show up in Wisconsin every year through my work at the UW Insect Diagnostic Lab (3 so far in 2021!). I’ve mentioned this in previous blog posts, but humans make excellent accomplices in moving species from one spot to another on the globe. This last spring, I saw one of the most interesting cases of my career which highlights this point exactly.

Like any good globetrotting adventure, this story involved a rugged, adventurous mode of travel—a Jeep. This particular Jeep had been imported in late 2020 and after a period of time in the eastern US, it eventually wound up in a small town in central Wisconsin. Unbeknownst to the owner of the vehicle, this Jeep also contained unexpected insect stowaways.

These insects managed to survive for months sheltered within the Jeep and would become active when the vehicle was in use—unexpectedly wandering out of nooks and crannies, much to the displeasure of the driver. Obviously, this isn’t something a new car owner wants to see, so a pest control professional was consulted about the insects and they got in touch with me at the UW Insect Diagnostic Lab to figure out what the specimens were. In the initial conversation, the mystery insects had been described as “stink bugs” and I figured that overwintering nuisance insects like the brown marmorated stink bug might have been involved. The photos, however, hinted at something far more puzzling.

The initial photo I received of the mystery insect on a car window.  Limited resolution, but definitely not a stink bug or anything else that I recognized. This certainly was a “we’re not in Kansas anymore” type moment.

By this point, I had been running the UW Insect Diagnostic Lab for six years and hadn’t seen anything quite like the insect in the photo. I requested a sample to get to the bottom of this mystery under the microscope.  I handle so many cases at the diagnostic lab (~2,500 annually), that I can generally identify most specimens to family (or perhaps even genus or species-level) with a quick peek. In this case I was utterly perplexed, meaning I had to run it through a general family-level taxonomic key for the true bugs (Order Hemiptera). In Borror and DeLong’s Introduction to the Study of Insects the specimens keyed out to the Family Heterograstridae.

From the Hemiptera family key from Borror and DeLong’s Introduction to the Study of Insects. The asterisk symbol (*) is always a surprise.

An asterisk is always a surprise when you encounter it in a taxonomic key. It generally means one of two things: you either took a “wrong turn” in the decision-making process (and misidentified the specimen) or it’s something rare or highly unusual. Something seemed amiss, so I consulted a few other keys to further confirm the Family Heterogastridae. In North America there’s only a single genus (Heterogaster) from this family and three species known from the west coast of the US. The specimens in my possession looked markedly different. Because the Family Heterogastridae is mostly a footnote in the western hemisphere, it’s hard to find information on this group of insects.

This is why geographic clues can be so important in diagnostics and why I request this information with every sample at the UW Insect Diagnostic Lab. Knowing where a specimen was collected and/or originated helps tremendously in learning more about it. Through follow-up conversations, I learned that the Jeep was manufactured in and imported from Melfi, Italy—meaning there was a good chance I was looking in the completely wrong hemisphere for the information needed to identify it.

This led to many evenings of armchair sleuthing. During this process, I’d like to imagine myself as Jason Bourne tracking down members of an international conspiracy while a suspenseful soundtrack blared in the background, but in reality I was mostly just locating pdfs of scientific papers and using Google Translate. Such work could have taken months or even years a few decades ago, but was now possible in the matter of a week or two.

Thanks to Interlibrary Loan and other online resources, I tracked down manuscripts from a half-dozen European and Middle Eastern countries in multiple languages and spent hours pouring over posts on Italian and French insect forums looking for clues. I finally found my answer in a scanned pdf version of Jean Péricart’s Hémiptères Lygaeidae euro-méditerranéens, vol. 1., which identified the specimens as Platyplax inermis—a species associated with Salvia spp. plants in the Mediterranean region.

Map showing reports of Platyplax inermis from its native range. Map credit: iNaturalist.

Having finally identified the stowaway insects and their origin, my work was mostly done at that point. The species happened to be on the USDA-APHIS regulated plant pest list (technically, the entire family Heterogastridae is listed), so I reached out to colleagues at the USDA-APHIS office in Madison to hand off the case. Specimens were sent off to an APHIS field office in Chicago and then off to the Smithsonian for further confirmation, a few specimens are also being deposited in the Wisconsin Insect Research Collection.

While most cases at the UW Insect Diagnostic Lab aren’t anywhere near this exciting, even insect diagnosticians get to live vicariously every once in a while.

 

Hackberry Emperor Butterflies Take the Stage in Wisconsin

Wisconsin is home to roughly 150 species of butterflies. Some of these, like monarchs (Danaus plexippus), are well-known and easily recognizable. Other species can be more subtle in appearance (such as the “skippers”) or may not be particularly abundant. Nonetheless, we occasionally see localized “booms” of certain butterfly species from time to time. This year, the hackberry emperor butterfly (Asterocampa celtis) has taken the stage in some parts of the state.

Hackberry emperor butterfly with wings spread
Hackberry emperor butterfly. Photo credit, Richard Crook via Flickr.

In the last month, I’ve had more reports of hackberry emperor butterflies at the UW Insect Diagnostic Lab than any other butterfly species. These reports have primarily come in from southcentral and southwestern Wisconsin. In some cases, hackberry emperors have been spotted by the thousands as they covered rural roads or transformed backyards into temporary live butterfly exhibits.  Hackberry emperors primarily occur in southern parts of the state where the food plant of the caterpillars (hackberry trees) can be abundant; they’re also known from parts of central and west central Wisconsin.

Hackberry emperors are mid-to-large sized butterflies with a wingspan of approximately 2 inches. Their brownish-orange and black wings are somewhat similar to certain other butterflies (such as the “Satyrs”), which can make identifying them a bit more challenging to the uninitiated. Luckily, there’s a distinctive row of black spots on the wings—one distinctive spot on the topside of each forewing and seven slightly smaller spots on each hindwing. When the undersides of the wings are viewed (such as when the wings are folded upwards at rest), these black spots are bordered with a bit of yellow, giving them an “eyespot” appearance.  A close relative and look-alike, the tawny emperor (Asterocampa clyton), lacks the large black spot on each forewing.

Hackberry emperor butterfly with wings folded at rest
Hackberry emperor butterfly lapping salt. Photo Credit: Judy Gallagher via Wikipedia.

Adults butterflies often serve as pollinators when they visit flowers for nectar, but hackberry emperors have slightly different behaviors.  They prefer to head to oozing tree wounds for sap or decaying plant materials in compost piles. They’re also fond of salts and can readily be spotted at puddles (a phenomenon simply known as “puddling”), at dung or carrion, lapping sweat from humans, or on roadways.

Hackberry emperor butterflies on a rural road
Thousands of hackberry emperor butterflies were recently spotted on roadways in southwestern Wisconsin. Photo Credit: Jay Watson, WI-DNR. [Photo used with permission]
After overwintering as partially-grown caterpillars, hackberry emperors complete their development in late spring with two broods (batches of adults) in southern Wisconsin.  We see the first batch of adults in June, with the other in August, so we may see more of this species later this summer. If you’re located in southern Wisconsin, keep an eye out for these abundant butterflies in 2021.

Hindsight: 2020 Trends at the Wisconsin Insect Diagnostic Lab

When the COVID situation reared its head back in March of 2020, I wasn’t sure how it would impact activities at the UW Insect Diagnostic Lab.  While there was a shift to handling diagnostics mostly remotely, in the end, 2020’s caseload of 2,533 ID requests was just shy of 2019’s all-time record of 2,542 cases.  

With Governor Evers’ Stay-at-Home Order last spring, our attentions were occupied by the unraveling pandemic and caseload at the UW Insect Diagnostic Lab was lighter than usual around that time.  However, as Wisconsinites shifted to working from home, it meant spending more time in yards and many Wisconsinites pulled out their green thumbs and established COVID “Victory Gardens”.  As a result, the diagnostic lab saw a record number of cases in July of 2020, with close to 600 ID requests that month alone. 

Monthly caseload at the UW Insect Diagnostic Lab in 2020. Credit: PJ Liesch, UW-Entomology.

Outreach activities of the lab saw a dramatic shift as well.  With in-person presentations and workshops off the table, virtual events afforded new opportunities—like a Japanese beetle seminar in July which drew nearly 900 participants. Regular events, like my appearances on WPR’s The Larry Meiller Show also continued through 2020, although I fielded calls from my home’s “reading nook” rather than the WPR studio.  

One of the biggest insect stories of 2020 was the Asian giant hornet.  Last May we learned that Asian giant hornets had survived the winter in the Pacific Northwest.  This of course led to a distinct increase of so-called “sightings” of that insect in Wisconsin, although every  “sighting” ended up being common insects from our area.  Last year, I saw dozens of ID requests for insects which ended up being look-alikes such as cicada killer wasps, pigeon horntails, and great golden digger wasps.  To date, the nearest sighting of the Asian giant hornet is well over 1,000 miles from us here in Wisconsin and poses no immediate threat to the upper Midwest.  Further reading: 6 Things to Know about the Asian Giant Hornet.

Some invasive pests had big years as well.  The viburnum leaf beetle, lily leaf beetle, purple carrot seed moth, and brown marmorated stink bug all increased their footholds in the state. Japanese beetle numbers varied a lot depending on where you were located in Wisconsin.  Some areas saw little pressure during droughty periods, while other parts of Wisconsin saw high Japanese beetle activity.  Gypsy moths had been quiet in Wisconsin for several years, but increased their numbers last year.  I saw a distinct increase of gypsy moth cases in 2020, and I’ll be keeping a close eye on that species in 2021.   

Come fall, we saw some stretches of unseasonably pleasant temperatures in October, November, and December.  During those periods, multicolored Asian lady beetles—which had been lurking in the background for several years—returned to the spotlight.  The multicolored Asian lady beetle activity around Wisconsin was some of the highest of the last decade.  Not to be left out of the fun, minute pirate bugs were abundant in some parts of the state and made warm, sunny fall days a little less pleasant due to their biting habits.  Speaking of biting insects, black flies were abundant in 2020 and made outdoor activities more challenging in June and July.  Mosquito activity varied around the state, although we did see a few cases of the Eastern Equine Encephalitis in 2020.

While we won’t see a big emergence of 17-year periodical cicadas in Wisconsin until 2024, small numbers of out-of-sync “stragglers” did emerge in southeastern Wisconsin last summer. 

A female Dryinid wasp. The forelegs are highly modified into scythe-like claws used to grasp other insects. Photo credit: Ty Londo.

No two years are the same at the UW Insect Diagnostic Lab and that includes some of the “X-Files” type cases as well.  Some of my favorite cases from 2020 include identifying phorid flies from dead radioactive cats (it’s a long story…), a grim-reaper-esque dryinid wasp, several massive black-witch moths from Central America, and a case involving a black widow spider found in a head of broccoli from the grocery store.  Never a dull moment at the UW Insect Diagnostic Lab!

—PJ Liesch
Director, UW Insect Diagnostic Lab

Great Golden Digger Wasp: Another Asian Giant Hornet Look-Alike

With the media craze about “murder hornets” this past spring, I’ve seen a definite increase in reports of Asian giant hornet look-alikes at the UW Insect Diagnostic Lab this summer.  Many folks recognize the commonest look-alike in the Midwest, the eastern cicada killer (Sphecius speciosus), which becomes active in July around the time that their prey (cicadas) start emerging.  Another look-alike is one that you might not have bumped into before—the great golden digger wasp (Sphex ichneumoneus).  Similar to Asian giant hornets, great golden digger wasps are large and nest in the ground, which are reasons why they may be mistaken for the former.

If you haven’t spotted one before, great golden digger wasps can be a bit intimidating in appearance as they can easily be over an inch long.  However, their anatomy and appearance are quite different compared to Asian giant hornets.  Great golden digger wasps are mostly black with a rusty-reddish color at the base of the gaster (“abdomen”).  Their legs are the same reddish color and the black thorax and head possess fine golden setae or “hairs” (hence “golden” in their name).  In contrast, Asian giant hornets have distinctive black and yellow stripes on their gaster and a vibrant yellowish-orange head.  Great golden digger wasps belong to the “thread-waisted” wasp family (Family Sphecidae) and have a long, slender petiole (“waist”).  This isn’t as thin and narrow as the “waist” of the related black and yellow mud dauber (Sceliphron caementarium), but still is quite noticeable when viewed from the side.

Great golden digger wasp
Great golden digger wasp (Sphex ichneumoneus); note the slender petiole or “waist”. Photo credit: Judy Gallagher, via Wikipedia.

In terms of their biology, both Asian giant hornets and great golden digger wasps do nest in the ground, but the similarities end there.  The Asian giant hornet is really quite similar to our ground-nesting yellowjackets in terms of their nesting behavior.  These are social creatures which start nests from scratch in spring and build up in size over the course of the warmer months.  Colonies ultimately die out in fall except for the “new” queens which overwinter.  With a large colony of relatives to defend, social wasps can be defensive, especially when colonies are at peak size.

In contrast, great golden digger wasps are solitary ground nesters.  Without a large colony of relatives to defend, they’re usually non-aggressive and very unlikely to sting.  Stings are only likely if one were to pick one up bare-handed—in which case you might be asking for it!  Similar to cicada killer wasps, each female great golden digger wasps excavates small tunnels in sandy soil and provisions them with prey for their young to feed on.  In the case of the great golden digger wasp, prey consists of katydids, crickets, and relatives from the “grasshopper” group (Order Orthoptera).  Rather than kill outright, the females inject their prey with a paralytic “cocktail” to keep them alive and fresh for their young to feed on—what a way to go!  In addition to hunting katydids, adult great golden digger wasps visit flowers and can be beneficial pollinators.

Great golden digger wasp on flower
Great golden digger wasp (Sphex ichneumoneus) drinking nectar from a flower. Photo credit: Roy Niswanger, via Flickr.

Because they’re unlikely to sting humans, controlling great golden digger wasps is rarely justified and these magnificent creatures can simply be admired.  Ultimately, these wasps are strongly associated with sandy soil, so if you see them in your yard every year and would prefer to not have them around, modifying the landscaping may be a long-term option to dissuade them from an area.


Author’s note: As of August 2020, Asian giant hornets have not been found in Wisconsin or anywhere in the Midwest.  In North America, these insects are only known from far northwestern Washington state and nearby parts of British Columbia. 

See this earlier post for additional details on the Asian giant hornet.

Some Insects Don’t Understand Social Distancing

In the grand scheme of things, most insects (and spiders) are loners.  Perhaps they set a good example for us in 2020 with their social distancing.

Of course, insects have to find a mate to reproduce at some point in their lives*, but out of the 1 million+ described insect species, being truly “social” isn’t the norm.  There certainly are some well-known examples of insects that are eusociali.e., they live together as a colony.  Examples include ants, certain types of wasps (such as yellowjackets and paper wasps), some bees, termites, and a few other interesting examples.  However, there are many insects that are much more solitary in their habits.  If you think of our bees in the Great Lakes region, we have roughly 500 species.  Other than honey bees, bumble bees and a few others, the vast majority of these species are solitary creatures with each female doing her own thing.

Two herds of Cerastipsocus venosus barklice. Photo submitted to UW Insect Diagnostic Lab.

Interestingly, there’s a quirky insect that can be commonly encountered this time of the year and it missed the memo on social distancing.  I’m referring to an interesting species of barklouse (Order Psocodea): Cerastipsocus venosusBarklice are relatives of true lice (e.g., head lice and pubic lice) but they’re really quite harmless to humans and tend to be scavengers.  Barklice make up an obscure group of insects and many entomology students simply identify them to “order” level as this group can be challenging to narrow down further to family, genus, or species.

Group of Cerastipsocus venosus juveniles. Note the striped abdomens which make them easy to identify. Photo submitted to UW Insect Diagnostic Lab.iny

If you haven’t encountered Cerastipsocus venosus (aka “tree cattle”) before, it might catch you off guard to find a group (formally known as a “herd”) of these small insects hanging out together on the bark of a tree or a rock in your yard.  The tiny juveniles are particularly striking with yellow stripes on their abdomens.  The adults are larger (up to 1/4″ long) and possess black wings.

A Cerastipsocus venosus adult. Note the black wings, which are only found in the adults. Photo submitted to UW Insect Diagnostic Lab.

Rest assured, these barklice pose no threat to trees or other plants in our yard and these native insects simply nibble on lichens, and pieces of dead tree bark.  Every year I get many reports of these insects in mid- and late- summer at the UW Insect Diagnostic Lab and there’s no need to spray or do anything about these if you spot them in your yard.  These barklice don’t seem to stay in the same place for very long, so perhaps their herds just move along looking for greener pastures.


*Some insects are able to reproduce asexually, and don’t technically have to find a mate…

Snow Fleas: When a “Flea” isn’t a Flea

Fleas (Order Siphonaptera) can be an unwanted surprise—no one wants fleas on their pets or in their house.  Our commonest flea on both cats and dogs in the Midwest is the “cat flea” (Ctenocephalides felis), and this same species can also live on a wide range of wild animals.  Cat fleas may be annoying but can be controlled with a diligent multi-pronged approach: chatting with your veterinarian to pick a proper treatment for your pet and regular and thorough vacuuming. In heavy infestations, carpets and furniture may also need to be treated.  While fleas could be encountered anytime of the year, I see the vast majority of flea cases at the UW Insect Diagnostic Lab in late spring and summer.  In contrast, cases of fleas are few and far between during the winter months due to the dry conditions and lower temperatures which can be hard on these insects.

There is one type of “flea”, however, that I see regularly through the winter months—the “snow flea”.  Snow fleas (Hypogastrura nivicola   and close relatives) aren’t actual fleas and rather than a pest, these harmless creatures are a beneficial curiosity.  Their cold tolerance and ability to launch themselves into the air account for their nickname.

Up-Close View of a Snow Flea. Photo Credit: Daniel Tompkins via Wikipedia

The snow fleas we’re talking about technically aren’t even insects and belong to a closely related group of arthropods known as springtails (Collembola).  Springtails get their name from the furcula—an anatomical structure on the underside of their bodies, which springs downwards to catapult them up into the air.  Springtails can’t “jump” very far by human standards given their tiny size (less than a tenth of an inch long), yet they can easily launch themselves many times their own body length in a mere blink of an eye (video).

The snow flea is unusual for springtails (and most arthropods) in the fact that these creatures can remain quite active during the winter months.  As discussed in this post from last March, insects and other arthropods have a variety of strategies to make it through winter, ranging from migration to freezing solid in some cases.  The vast majority of arthropods are inactive during winter, but some, like the snow flea, seem perfectly content wandering out on the snow.  With their tiny size and dark grayish bodies, snow fleas can almost look as if someone had dumped out a pepper shaker on the snow.

Snow fleas in their element. Photo Credit: Christa R. via flickr.

Their ability to remain active at frigid temperatures is due to the concentration of specific proteins in their bodies, which serve as a cryoprotectant or natural “antifreeze”.  During the rest of the year, these creatures simply blend in amongst fallen leaves where they scavenge upon decaying materials and help with nutrient recycling.

These creatures are truly a winter curiosity if you haven’t encountered them before.  The next time you’re out snowshoeing or cross-country skiing, keep an eye out for these tiny acrobats on the snow.


Final Note: Overseas, our friends in the UK have different creatures they refer to as snowfleas—insects from the genus Boreus, which we’d call “snow scorpionflies” in our area.

Insects on the Move: Viburnum Leaf Beetle

A perk of being an entomologist is being able to better understand the world through the tiny creatures around us.  However, this can also be a bit disheartening at times.  While vacationing in Florida several years ago, I remember visiting the beach and the first three arthropods I encountered were out of place—a honey bee (originally arrived with Europeans), a millipede from Caribbean islands, and a weevil from Sri Lanka.  I doubt any other beachcombers recognized the international gathering amongst the dunes that day.

A honey bee (Apis mellifera) on a Florida beach.
A honey bee (Apis mellifera) on a Florida beach. Honey bees arrived in North America with Europeans and aren’t native to our area. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

Seeing the world this way really reinforces the notion that humans play a critical role in the movement of species around the planet.  Scientists can make their best predictions about invasive species, but there are plenty of surprises in terms of when and where a given species will turn up.  For high priority invasives, designated surveys and inspections are conducted by government agencies to help monitor the situation.  The general public can also play an important role in documenting the presence and distribution of invasive plants, insects, and other organisms.  In Wisconsin, for example, the Wisconsin First Detector Network (WIFDN) uses a network of citizen scientists and a smartphone app to document invasive species.       

White-spotted caterpillar of the purple carrot seed moth (Depressaria depressana) found in Middleton, Wi in July, 2019. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

In some cases, invasive species are simply stumbled upon.  Back in July, I bumped into the first case of the purple carrot seed moth in Dane county while riding some local mountain bike trails.  Along these lines, my wife and I were walking our dogs in early November when I spotted some suspicious damage on a row of viburnum shrubs.  A closer look revealed the distinctive feeding holes and egg pits of the invasive viburnum leaf beetlethe first evidence of an established infestation in Dane County

Egg pits of the viburnum leaf beetle on a viburnum twig.
Egg pits of the viburnum leaf beetle. Females chew small depressions in twigs of viburnum shrubs, lay several eggs, and cover the eggs with pits of chewed plant materials. Photo credit: PJ Liesch, UW Insect Diagnostic Lab.

The first established case of the viburnum leaf beetle in Wisconsin occurred in 2014 in northern Milwaukee county and a more detailed account of this species can be found in the original post on this blog.  Unfortunately, this invasive beetle has made some dramatic jumps on the map over the last few years—likely due to human movement of infested plant materials.  Back in 2017, VLB was detected in Oshkosh (Winnebago Co.). In June of 2019 viburnum leaf beetle was spotted in Hurley (Iron Co.) in far northern Wisconsin and was detected across the border in Ironwood, Michigan shortly thereafter. Other detections in 2019, include Racine and Walworth counties. 

Map of the the viburnum leaf beetle in Wisconsin.
Known distribution of the invasive viburnum leaf beetle in Wisconsin as of November 2019. Counties shaded in light blue had infestations known prior to 2019. VLB was detected in dark blue counties for the first time in 2019. Map: PJ Liesch, UW Insect Diagnostic Lab.

The viburnum leaf beetle can cause significant damage to viburnum shrubs and is already wreaking havoc in the greater Milwaukee area.  Viburnums, including American cranberrybush viburnum, arrowwood viburnum, and others are widely distributed in both urban and natural settings, meaning that Wisconsinites now need to keep an eye out for this damaging insect in new parts of the state.


To learn more about the appearance, damage, and biology of the viburnum leaf beetle, visit the original post and this factsheet.